GoMRI
Investigating the effect of oil spills
on the environment and public health.
revert menu
Funding Source: Year 8-10 Research Grants (RFP-VI)

Project Overview

Synthesis of the Physical Processes in Subsea Bubble Plume to Connect Natural Seeps and Oil Spills

Principal Investigator
Texas A&M University
Department of Oceanography
Member Institutions
Texas A&M University, University of Missouri

Summary:

Dr. Binbin Wang at Texas A&M University’s, Geochemical and Environmental Research Group was awarded an RFP-VI grant at $436,123 to conduct the RFP-VI project titled, “Synthesis of the Physical Processes in Subsea Bubble Plume to Connect Natural Seeps and Oil Spills”. Dr. Wang served as Principal Investigator for the first year. Dr. Steven DiMarco at Texas A&M University’s, Department of Oceanography took on the role as Principal Investigator for the remainder of the project.  Dr. Wang remained on the project as Co-Principal Investigator after his move to the University of Missouri’s, College of Engineering. The project also consisted of 6 PhD students (Soobum Bae, Inok Jun, Geng Li, Sakib Mahmud, Chris Nygren, Huijie Wu).

Natural seeps have been widely used as a proxy in studying oil spills, due to its similar nature to subsea oil spills, i.e., both are hydrocarbon release events in the oceanic environment. However, the physical processes between these two events are not exactly the same, owning to the significant difference of release rate that results in different regimes of characteristic plume scale. As such, understanding the difference and connection between them is critical to appropriately transfer the knowledge of natural seeps to the oil spills. The foremost difference of the fundamental physics between natural seeps and oil spills is the mechanism of ambient water entrainment. The entrainment determines both hydrodynamics and thermodynamics in the plume (for instance, diluting the petroleum fluids; influencing the velocity field; affecting the transport of associated contaminants, etc.). 
 

This proposed work is an integrated effort, synthesizing existing laboratory and field data obtained from the previously funded GISR consortium, with the purpose to understand the physical processes of multiphase plume under a wide range of release conditions. This study’s main objective is to understand and to quantify the difference and connection of the multiphase plumes for small and large release rates, particularly, natural seeps and oil spills. This proposal specifically addresses the GoMRI RFP-VI Theme 1: “Physical distribution, dispersion, and dilution of petroleum (oil and gas), its constituents, and associated contaminants (e.g., dispersants) under the action of physical oceanographic processes, air-sea interactions, and tropical storms.”

 

This synthesis effort will provide fundamental understanding of bubble plume entrainment and behavior under a variety of flow conditions. The proposed project will fill the knowledge gap in understanding the underline physics of the transition between weak and coherent bubble plumes. This project will also refine an existing integral multiphase flow model that resolve the fate of hydrocarbons and the dynamics of subsea multiphase flows in a wide parameter range of plumes. Together, this two-year synthesis project will add key components that expand the current knowledge of multiphase flow in the full range of characteristic plume scales from individual bubbles to massive blowout.

 

The proposed project will have a broader societal impact in two major areas: enhancement of scientific infrastructure and education. First, the development of the submersible PIV system will enhance the scientific infrastructure for other relevant studies. Second, the instrumentation developed for the laboratory experiments will create unique resources for interdisciplinary training and education of next generation earth scientists (particularly across the boundary between Engineering and Ocean Sciences through the course development plan and Ph.D. student training).

 

Research Highlights

 

Dr. DiMarco’s research, which included 5 outreach activities, resulted in 6 peer- reviewed publications to date and 3 datasets submitted to the GoMRI Information and Data Cooperative (GRIIDC), which are available to the public. Significant outcomes of their research (all related to GoMRI Research Theme 1) are highlighted below in PDF format.

 PDF Click to view Theme 1 Project Highlights

 

The details of findings in this project are summarized in the following publications:

 

[1]   Wang, B. and Socolofsky, S. A. Characteristics of mean flow and turbulence in bubble-in-chain induced flows, 2019, Physical Review Fluids, doi: 10.1103/PhysRevFluids.4.054302

[2]   Wang, B.; Lai, C. C. K.; Socolofsky, S. A. Mean velocity, spreading and entrainment characteristics of weak bubble plumes in unstratified and stationary water, 2019, Journal of Fluid Mechanics, 874, 102-130, doi: 10.1017/jfm.2019.461.

[3]   Li, G.; Wang, B.; Wu, H. and DiMarco, S. F. Impact of bubble size on the integral characteristics of bubble plumes in quiescent and unstratified water, 2020, International Journal of Multiphase Flow, doi: 10.1016/j.ijmultiphaseflow.2020.103230.

[4]   Wu, H.; Wang, B.; DiMarco, S. F. and Lei, T. Turbulence in bubble plumes in unstratified quiescent water, 2020, Journal of Fluid Mechanics, submitted. 

[5]   Wang, B.; Jun, I.; Socolofsky, S. A.; DiMarco, S. F. and Kessler, J. Dynamics of gas bubbles from submarine hydrocarbon seeps within the hydrate stability zone. 2020, Geophysical Research Letters10.1029/2020GL089256 (in early release).


PDF Proposal Abstract - RFP-VI PI Steven DiMarco and Binbin Wang


Project Research Update (2019):

An update of the research activities from the GoMRI 2019 Meeting in New Orleans.

Direct link to the Research Update presentation.

This research was made possible by a grant from The Gulf of Mexico Research Initiative.
www.gulfresearchinitiative.org